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A new statistical distribution for characterizing the
random strength of brittle materials
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A new three-parameter statistical distribution is offered for the description of random

strength of a brittle material. The distribution allows characterization of a wide range of

relations regarding the strength—size effect. Thus, in contrast to the Weibull distribution, the

non-linear character between the logarithm of average strength and the logarithm of the

specimen size may be described, while retaining the Weibull function as a limiting case.

Furthermore, the proposed distribution permits simple evaluation of the necessary

statistical parameters by considering all experimental points for different specimen sizes

together. Experimental confirmation of the strength distribution is illustrated using

experimental data on three types of glass fibres at three gauge lengths each.
1. Introduction
The effect of size on the average strength of a brittle
material can be explained by the stochastic nature of
the material strength [1]. The most widely used distri-
bution function for characterizing the relationships
between the variability of strength, the average
strength, and the material (specimen) size is the two-
parameter Weibull distribution in the following
form [1]
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Where P is the cumulative probability function of
strength, r. The constants A and b are the scale and
shape parameters, respectively, » is the specimen vol-
ume, and »

0
is the reference volume. The physical

interpretation of Equation 1 is that the flaw distribu-
tion per unit volume is independent of specimen size.
Thus, the volume dependence of the average strength,
r6 , may be characterized by the shape parameter, b, only
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While Equation 2 has been shown to be a good
approximation of the effect of size on the average
strength of many brittle materials, it is not a good
representation for all materials over a wide range of
sizes. This phenomenon is especially significant, be-
cause it may result in a serious strength overestima-
tion of specimens (material elements) of very small
size. For example, the strength of very short fibre
fragments is of particular interest with regard to the
properties of fibre-reinforced composite materials
where the critical fibre lengths are in the range
0.1—0.5 mm [2]. Schmitz and Metcalfe [3] showed
that significant overestimation of the strength of very
short glass fibres occurs when extrapolating data from

fibre lengths in the range 2.5—20 cm using a classical
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Weibull distribution. They suggested that the flaw
distribution changed with fibre length and that in
order properly to characterize the strength—length re-
lation it was necessary to use different flaw distribu-
tions at different lengths. The ‘‘weakest link’’ concept
for analysis of the fibre size effect has also been used by
Rosen [4]. The strength distribution of an initial ele-
ment was chosen in the bimodal form of a double
rectangular function. A similar idea has been utilized
by Fraser et al. [5] to estimate the strength of glass
fibres at very short lengths.

A modification of Equation 1 is the well-known
three-parameter Weibull distribution
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In this case, the variability of b still determines the
effect of size on the ‘‘shifted’’ average strength,
(r!r

0
).

Other approaches to fitting empirically statistical
data on the strength distribution of brittle materials
have depended on the use of three- or four-parameter
distributions. For example, a factor, a (0(a)1), has
been offered for fibres and/or composites in the fol-
lowing form [6, 7]
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It has been assumed that this factor reflects a differ-
ence between fibre strength variability along and
across a fibre. The advantages of using Equation
4 have been considered, for example, by Beyerlein and
Phoenix [8]. Other modifications of a Weibull distri-
bution have been proposed by Stoner et al. [9]
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by Padgett et al. [10]
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and by Ibnabdeljalil et al. [11]
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Where A
1
, A

2
, b

1
, b

2
, c, k are some experimentally

evaluated parameters. Equation 5 takes into account
an end-effect failure mode [9], while Equation 6 as-
sumes a general linear dependence of the character-
istic A~b on the gauge length, and Equation 7 takes
into consideration the possibility of initial discontinui-
ties before loading. Although Equations 4—7 do per-
mit one to take into account observed divergence from
the Weibull relation (Equation 2), their application is
limited by difficulty in evaluation of their statistical
parameters due to the complex form of the exponen-
tial terms.

Therefore, the purpose of this work was to offer
a new distribution function that could account for
a wide range of functional forms of the effect of size on
the strength distribution, while retaining a simple
method of evaluation of the basic statistical para-
meters. The utility of the proposed distribution will be
illustrated using experimental data on a series of glass
fibres with different gauge lengths.

2. Analysis of the distribution
In a more general case, the Weibull distribution may
be represented as

P(r, » )"1!exp C!
»
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where F (r) is a monotonically increasing function of
r with the only limitation F (r)*0. Although the
physical significance of the expression F (r)/»

0
is the

number of critical defects per unit volume, the power
law approximation of the function F(r) in Equation
1 is justified exclusively by successful representation of
experimental data. Therefore, in order to have a more
flexible form of F (r), while retaining the utility of the
Weibull approach, we propose the following three-
parameter approximation
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and the corresponding distribution in a form
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A probability density function, p, may be calculated as
(BO0)
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As BPR, !R, Equation 10 reduces to the classical

two-parameter Weibull distribution (Equation 1).
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However, at finite magnitudes of parameter B, a non-
linear relation between the logarithm of the average
strength and the logarithm of specimen size may be
taken into account. Let us consider a plot of hypo-
thetical experimental data ln(r6 ) b ln(»/»

0
) (Fig. 1a),

where r6 is the average strength. A linear dependence is
obtained when BPR, !R, while non-linear curves
will reflect finite magnitudes of B. The smaller the
value of parameter B, the more non-linear is the rela-
tionship. The magnitudes of B can be, in general,
greater or less than zero: the sign of B indicates the
shape (sign of curvature) of the dependence
ln(r6 ) b ln(»/»

0
) (Fig. 1a). Consequently, experi-

mentally observed non-linearity of the plot
ln(r6 )b ln(»/»

0
) may be described by Equation 10.

Similarly, for a cumulative probability function for
a single size, », the plot ln Mln [1/(1!P)]Nb ln(r) will
be linear when BPR, !R, but non-linear at finite
magnitudes of B (Fig. 1b).

From the viewpoint of practical applications, the
main statistical characteristics of the distribution,
namely the average strength, r6 , and standard devi-
ation, rr, are of particular interest. These character-
istics are calculated as
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Figure 1 Schematic representation of the distribution.



where (
1
(b, -), (

2
(b, -) are dimensionless functions

in the following form
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Although functions (
1
(b, -) and (

2
(b, -) cannot be

represented in an analytical form, their numerical in-
tegration may be easily carried out using known mag-
nitudes of b and -.

The proposed distribution is a suitable for numer-
ical analysis at any B'0. However, at B(0, a limita-
tion regarding the monotonic character of F (r)
should be noted. Solving for dF(r)/dr"0, one finds
that when B(0 the monotonic character of F (r)
exists in the range r(DB Db. It will be shown that in
the cases studied where B(0, this condition is fulfil-
led for the experimentally observed data with a con-
siderable reserve.

Figure 2 Dependencies of (a) cumulative probability and (b) prob-
ability density on ratio B/A at b"5 and k"»/» "1. B/A: (e) 0.1,
0
(K) 0.5, (n) 1, (]) 5, (*) infinity, (s) !5, (#) !1.
Figure 3 Dependencies of (a) cumulative probability and (b) prob-
ability density on k"»/»

0
at b"5 and B/A"1. k: (e) 1000, (K)

100, (n) 10, (]) 1, (*) 0.1, (s) 0.01, (#) 0.001.

Fig. 2 illustrates the effect of the ratio, B/A, on the
distribution of relative strength, r/A. One can note
that in contrast with the Weibull distribution (BPR,
!R), there is a very convenient opportunity to
‘‘manage’’ the average strength and the strength varia-
bility via the ratio B/A. The effect of the reduced size,
k"»/»

0
, on the strength distribution for a fixed value

of B/A"1 is illustrated in Fig. 3.

3. Statistical evaluation of the
parameters

Values of the parameters b, A and B can be obtained
using a statistical treatment of the relevant experi-
mental data. For evaluation of the parameters, we
utilize the least square method. This approach allows
one to consider all experimental points for specimens
with different sizes together. Let us consider results of
experimental testing at different specimen volumes »

j
,

j"1,2,m, where m is the number of distinct sizes.
The magnitudes of the strength within each jth size,
r
i, j

; i"1,2 , n
j
, may be ranked in an increasing

order (r
i,j
*r

i~1,j
) (where n

j
is the number of experi-

mental measurements for jth size). Considering each
size separately, one may estimate a cumulative prob-
ability P

i,j
of a failure at r)r

i,j
as

P
i,j
"(i!0.5)/n

j
(17)

Consequently, taking twice the logarithm of both sides
of Equation 10 and using the above-mentioned nota-
tion, one can obtain for each experimental point

lnMln[1/(1!P
i, j

)]N"b ln(r
i, j

)#(1/B)r
i, j
!b ln(A)#ln(k
j
) (18)
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Equation 19 is reduced to a simpler form, because at
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, k"1, and, therefore, ln(k)"0. A minimiz-

ation procedure using the least square method should
be used for evaluation of parameters a
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Figure 4 Experimental distribution of (a) ‘‘Epoxy’’, (b) ‘‘PEEK’’,

and (c) ‘‘Starch’’ fibres. k: (e) 1, (K) 0.5, (n) 0.2.
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which is reduced to a system of linear equations with
a trivial solution
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where n"+m
j/1

n
j
is the total number of considered

experimental points. The desired parameters are
evaluated as b"a

1
; A"exp(!a

0
/b); B"1/a

2
.

4. Experimental analysis
Experimental confirmation of the proposed distribu-
tion has been illustrated using experimental strength
data on three types of S-2 glass fibres, taken from
rovings supplied by Owens Corning: (a) 463 AA ep-
oxy and thermoset compatible sizing, referred to as
‘‘Epoxy’’ coated; (b) 933 AA PEEK and thermoplastic
compatible sizing (‘‘PEEK’’); and (c) starch-coated
fibres (‘‘Starch’’). Single strands of fibre were separated
from the rovings and mounted on to C-shaped
paper templates using scotch tape and fast-curing

Figure 5 Experimental dependencies of the average strength of fibre

length, for (e) epoxy, (K) PEEK, and (n) starch.



epoxy. These were then pulled in tension in an MTS
tensiometer with a 2 1b (&0.9 kg) load cell and the
load—extension plot recorded on a chart recorder.
Tensile strength was measured at three different gauge
lengths, l"25.4, 12.7, 5.08 mm (k

1
"1, k

2
"0.5,

TABLE I Statistical parameters of strength distributions at the
reference length 25.4 mm

Fibre n ! b A (MPa) B (MPa) '

Epoxy 146 W 4.52 2644.8 — 0.1216
P 4.66 2564.0 !19 148.6 0.1215

PEEK 158 W 5.32 3009.9 — 0.3400
P 9.13 2045.4 !877.5 0.2796

Starch 153 W 3.86 1434.5 — 0.1483
P 7.03 949.0 !524.6 0.0776
i,j i,j
proposed distributions.

!W, Weibull distribution; P, the proposed distribution.
k
3
"0.2, respectively) for each type of fibre; approxim-

ately 50 tests were performed at each gauge length.
The experimental cumulative distributions of

strength are presented in Fig. 4, and the dependence of
the average strength on the fibre length is shown in
Fig. 5 on logarithmic axes. The non-linearity of the
ln(r6 )b ln(k) plot (i.e. the divergence from the classical
Weibull relationship) can be characterized by the
parameter B, using the proposed numerical procedure.
Calculated values of the parameters b, A, B and the
residual ' are presented in Table I. The residual para-
meter, ', is determined using Equation 20. For calcu-
lations using the classical Weibull function, we assume
a
2
"0 (because BPR). The results for the three fibres

reflect different degrees of divergence from a classical
Weibull distribution. In the case of epoxy-coated

S-glass fibres, the value of B is relatively high
Figure 6 Experimental plot of y b x for (a, b) ‘‘Epoxy’’, (c, d) ‘‘PEEK’’, and (e, f ) ‘‘Starch’’ fibres, using the (a, c, e) Weibull and (b, d, f )
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(B"!19 148.6; B/A"!7.47) and, consequently,
there is very little difference in A and b in
comparison to those for the classical Weibull expres-
sion. The difference between respective shape and
scale parameters does not exceed 3%. Moreover, the
proposed three-parameter distribution provides the
same residual ('"0.1215) as that for the two-para-
meter distribution ('"0.1216). The starch-coated S-
glass fibres, however, are better represented by
a smaller value of B"!524.6 (B/A"!0.55). The
values of A and b are significantly different for the two
models, and application of the proposed distribution
results in a residual ' which is approximately half that
for the classical Weibull distribution (0.0776 com-
pared to 0.1438). A similar effect is shown for PEEK-
coated S-glass fibres: B/A"!0.43 and the residual
' is reduced from 0.3400 to 0.2796. Graphical con-
firmations of the above-mentioned results are shown
in Fig. 6 as well. Plots of y

i,j
bx

i,j
for each type of

fibre are presented, where x
i, j
"ln(r

i,j
) and y

i,j
"

lnMln[1/(1!P
i,j

)]N!ln(k
j
) (plot of the classical of

Weibull distribution) or y
i, j
"lnMln[1/(1!P

i,j
)]N!

ln(k
j
)!r

i,j
/B (plot of the proposed distribution). The

difference between the two plots for the epoxy-coated
fibres is negligible (Fig. 6a, b), because the effect of
parameter B is very small. However, for the PEEK-
coated and starch-coated S-glass fibres (Fig. 6c—f ), one
can see a strong difference between the two distribu-
tions. The obvious linear character of Figs 6d and f in
contrast with the non-linear dependencies of Figs 6c
and e, illustrate the advantage of the proposed distri-
bution.

5. Conclusions
1. The proposed distribution allows characteriza-

tion of the effect of size on the average strength of
brittle materials when there is a non-linear relation-
ship between the logarithm of the strength and the
logarithm of the specimen size. The non-linearity of

the dependence ln(r6 )b ln(»/»

0
) is taken into account
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by introducing a third supplementary parameter,
!R)B)R. In the limits BPR, !R, the distri-
bution reduces to a classical Weibull form.

2. The proposed approach of statistical evaluation
of the distribution parameters, b, A, B, permits all
experimental points at different specimen sizes to be
considered together. Therefore, the calculated para-
meters possess higher statistical reliability than those
obtained using a limited number of average values only.

3. It is shown that in contrast with a classical
Weibull distribution, utilization of the proposed dis-
tribution allows the residual parameter, ', to be re-
duced significantly for experimental data regarding
strength distribution at different specimen sizes (gauge
lengths).
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